Conditioned Square Functions for Non-commutative Martingales
نویسندگان
چکیده
Abstract. We prove a weak-type (1,1) inequality involving conditioned square functions of martingales in non-commutative L-spaces associated with finite von Neumann algebras. As application, we determine the optimal orders for the best constants in the non-commutative Burkholder/Rosenthal inequalities from Ann. Probab. 31 (2003), 948-995. We also discuss BMO-norms of sums of non commuting order independent operators.
منابع مشابه
Gundy’s Decomposition for Non-commutative Martingales and Applications
We provide an analogue of Gundy’s decomposition for L1-bounded non-commutative martingales. An important difference from the classical case is that for any L1-bounded non-commutative martingale, the decomposition consists of four martingales. This is strongly related with the row/column nature of non-commutative Hardy spaces of martingales. As applications, we obtain simpler proofs of the weak ...
متن کاملA Weak Type Inequality for Non-commutative Martingales and Applications
X iv :m at h/ 04 09 13 9v 1 [ m at h. FA ] 8 S ep 2 00 4 A WEAK TYPE INEQUALITY FOR NON-COMMUTATIVE MARTINGALES AND APPLICATIONS NARCISSE RANDRIANANTOANINA Abstract. We prove a weak-type (1,1) inequality for square functions of noncommutative martingales that are simultaneously bounded in L and L. More precisely, the following non-commutative analogue of a classical result of Burkholder holds: ...
متن کاملAn Inequality for P-orthogonal Sums in Non-commutative L P
We give an alternate proof of one of the inequalities proved recently for martingales (=sums of martingale differences) in a non-commutative L p-space, with 1 < p < ∞, by Q. Xu and the author. This new approach is restricted to p an even integer, but it yields a constant which is O(p) when p → ∞ and it applies to a much more general kind of sums which we call p-orthogonal. We use mainly combina...
متن کاملDoob’s Inequality for Non-commutative Martingales
Introduction: Inspired by quantum mechanics and probability, non-commutative probability has become an independent field of mathematical research. We refer to P.A. Meyer’s exposition [Me], the successive conferences on quantum probability [AvW], the lecture notes by Jajte [Ja1, Ja2] on almost sure and uniform convergence and finally the work of Voiculescu, Dykema, Nica [VDN] and of Biane, Speic...
متن کاملNon-commutative Martingale Inequalities
We prove the analogue of the classical Burkholder-Gundy inequalites for noncommutative martingales. As applications we give a characterization for an Ito-Clifford integral to be an L-martingale via its integrand, and then extend the Ito-Clifford integral theory in L, developed by Barnett, Streater and Wilde, to L for all 1 < p < ∞. We include an appendix on the non-commutative analogue of the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005